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ABSTRACT   

The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-
resolution imaging.  We characterize the localization precision of a unique method for 3D superresolution imaging 
featuring a double-helix point spread function (DH-PSF).  The DH-PSF is designed to have two lobes that rotate about 
their midpoint in any transverse plane as a function of the axial position of the emitter.  In effect, the PSF appears as a 
double helix in three dimensions.  By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a 
function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the 
standard PSF throughout a 2 μm depth of field.  Comparisons between the DH-PSF and other methods for 3D super-
resolution are briefly discussed.  We also illustrate the applicability of the DH-PSF for imaging weak emitters in 
biological systems by tracking the movement of quantum dots in glycerol and in live cells.   

Keywords: superresolution, three-dimensional microscopy, fluorescence microscopy, single-particle tracking, quantum 
dot 
 

1. INTRODUCTION  
1.1 Fluorescence microscopy and superlocalization in two dimensions 

Since its invention in 1911,1 optical fluorescence microscopy has become ubiquitous in cell biology studies.  Because it 
uses light to probe a sample in a relatively non-invasive and non-perturbative fashion with high signal-to-noise ratios, 
fluorescence microscopy can be used to directly observe structures and dynamics within living cells.  As the technique 
was developed and used for studying nanoscale objects, the optical diffraction limit quickly became an obstacle.  The 
Rayleigh criterion dictates that the diffraction-limited resolution d of an optical microscope is given by 

 
NA

d 61.0 , (1) 

where λ is the emission wavelength of the emitter and NA is the numerical aperture of the microscope objective.  This 
resolution limit is ~250 nm for optical wavelengths, and features separated by less than this distance are unresolvable. 

Fortunately, images of single nanoscale emitters can be fit to extract the xy position of the object with nanometer 
precision.2, 3  This localization precision σ scales roughly as s/N1/2 for photon-limited shot noise, where s is the standard 
deviation of the microscope’s point spread function (PSF) and N is the number of photons detected.  In this way, the 
location of a point emitter can be determined to a much greater precision than the diffraction-limited resolution of an 
optical system.  This “superlocalization” property is well known in many areas of science,4 and this technique has been 
applied in single-molecule tracking studies5, 6 with great success. 

1.2 Single-Molecule Active-Control Microscopy (SMACM) 

Superlocalization of a biological structure requires a dense fluorescent labeling of that structure, and any nanoscale detail 
will be blurred out by the overlap of the PSFs from each of the emitters.  This “high concentration” problem in single-
molecule imaging can be overcome with Single-Molecule Active-Control Microscopy (SMACM),7 which enables high-
resolution imaging of dense ensembles of fluorescent molecules.  SMACM utilizes the active control of photoactivatable 
or photoswitchable fluorescent molecules to keep the concentration of activated emitters low at any instant in time.  This 
is usually accomplished by using a secondary control wavelength to turn on only a subset of the emitters such that the 
emitter density is sparse.  Each emitter in this subset is then localized, and its position is recorded (see Figure 1A-C).  
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After localization, a new cycle of activation and localization is performed on another subset of emitters, and this process 
is repeated until the positions of all of the fluorescent labels have been determined.  By combining the fitted positions of 
emitters from each cycle, one can attain a high-resolution image of the desired biological structure (see Figure 1E).  
Methods of active control include photoswitching, reversible photoblinking, or triplet state formation.  It is important to 
note that other solutions exist to the “high concentration” problem, such as spectral selectivity.8  However, recently, 
SMACM has been successfully applied to biological systems, denoted by the acronyms PALM, F-PALM, and 
STORM.9-11 

 
Figure 1. Simulation of SMACM imaging concept.  (A-C) Diffraction-limited images of low concentrations of active 
emitters labeling a sample structure. The emitter locations in these images can be fit to a precision much better than the 
diffraction-limited spot size. (D) Diffraction-limited image of all labels emitting simultaneously on a sample structure. Note 
that the structure details are blurred by diffraction. (E) SMACM image of the sample structure, created by summing all 
fitted emitter locations collected during repeated activation and localization cycles. Note that the resolution improvement 
yields a clearly resolved structure. The resolution improvement between (D) and (E), which is approximately a factor of 32, 
is typical of cases where the single emitter produce about 1000 detected photons. 

1.3 Superlocalization in three dimensions 

The above methods, until recently, have been restricted to two-dimensions for two reasons: (1) the PSF of a conventional 
microscope is symmetric about the focal plane (see Figure 2A); thus, a molecule z nm above the focal plane cannot be 
distinguished from a molecule z nm below the focal plane, and (2) the PSF of a conventional microscope contains very 
little information about the axial position of an emitter that lies within a few hundred nanometers of the focal plane,12, 13 
meaning that the z localization precision of the standard PSF is poor for emitters that lie near the focal plane.  Recently, 
several solutions to these problems have been developed, namely astigmatism,14-16 imaging in two focal planes,13, 17-19 
and interferometry.20, 21  In addition, fast 3D particle tracking has been performed using confocal microscopy22-24 and two 
rotating laser beams.24 

 
Figure 2. Simulations comparing the conventional PSF and DH-PSF.  (A) xz profile of a conventional PSF. This is the same 
as a yz profile since the PSF is radially symmetric. (B) xz profile of the DH-PSF. (C) yz profile of the DH-PSF. Note that the 
DH-PSF contains more information about the z location of an emitter since its gradient is a stronger function of z. The 
intensities of the PSFs are plotted on the same color scale, which is saturated to show the DH-PSF more clearly. The scale 
bar height represents 100 nm in the axial direction (object space), while the scale bar length represents 1 μm in the 
transverse dimension. (D) Three-dimensional isosurface rendering of the DH-PSF, with the focal plane included for 
reference. The simulation uses an emitter wavelength of λ=633 nm and a 100× oil-immersion objective (noil=1.518). 
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We have recently demonstrated the superlocalization of single-molecules25 and quantum dots26 in three dimensions using 
the double-helix point spread function (DH-PSF), as shown in Figure 2B-D.  The DH-PSF was developed and provided 
by R. Piestun and S.R.P. Pavani at the University of Colorado.27  With a widefield fluorescence microscope exhibiting 
the DH-PSF, point emitters appear as two lobes that rotate about one another as a function of the axial position of the 
emitter.  The midpoint between the two lobes corresponds to the xy position of the emitter, while the angle between the 
two lobes corresponds to the z position of the emitter.  In this manner, the three-dimensional location of point-like 
emitters can be easily calculated.  Combining the DH-PSF with photoactivatable fluorophores yields a three-dimensional 
variant of SMACM termed double-helix photoactivated localization microscopy (DH-PALM). 

The DH-PSF has several distinct advantages over other methods when used for three-dimensional localization.  It has a 
high Fisher information content in all three dimensions that is relatively constant over a 2 μm depth of field.26  This 
implies that the localization precision attainable with the DH-PSF is independent of the location of a fluorescent emitter.  
Furthermore, the shape of the DH-PSF is largely invariant over the entire depth of field.  Instead of using the precise 
shape of an image to determine the xyz location of an emitter, as is the case for the astigmatism and multiplane methods, 
the midpoint and angle between the two lobes yields the three-dimensional location of an emitter.  Finding the position 
of a peaked function is often easier than extracting the form of a function under low signal-to-noise conditions. 

Studies using the DH-PSF for superlocalization of bright objects such as 1 μm fluorescent beads28 and point scatters29 
have been demonstrated.  However, many SMACM experiments use relatively dim fluorescent protein labels that emit 
an order of magnitude fewer photons than the examples noted above.  Here, we show the tracking of quantum dots in 
glycerol and within COLO205 cells in three-dimensions using the DH-PSF.  We begin by describing the experimental 
setup and fitting algorithm in detail, including typical calibration curves used in our experiments.  We also discuss the 
use of fiduciaries for removal of stage drift.  The computational model of the system that is used to calculate the Fisher 
information content of the DH-PSF is then described.  We compare the Fisher information content of the standard PSF 
versus the DH-PSF.  Finally, we demonstrate in vivo tracking studies of quantum dots performed within live cells using 
the DH-PSF. 

 

2. METHODS 
2.1 Physical setup 

 
Figure 3. Schematic of the DH-PSF setup.  A 4f imaging system is placed in the detection path of a conventional 
fluorescence microscope consisting of a 100× 1.4 NA oil-immersion objective, mirror (M), and a tube lens (TL). The 
magnified image relayed from the microscope is input into the 4f system consisting of two lenses (L1 and L2) placed a 
distance 2f (f=15 cm) apart. A phase-only liquid crystal spatial light modulator with a DH-PSF mask is placed in the Fourier 
plane of the 4f system in order to convolve the microscope image with the DH-PSF. A polarizer (P) within the 4f system 
rejects unmodulated light. An electron-multiplying charge-coupled device (EMCCD) camera detects the resulting image. 

Proc. of SPIE Vol. 7571  75710Z-3

Downloaded from SPIE Digital Library on 04 Mar 2010 to 128.12.181.206. Terms of Use:  http://spiedl.org/terms



 
 

 
 

 

The conventional PSF of a fluorescence microscope (Olympus IX71) with a 100× 1.4 NA oil-immersion objective 
(Olympus UPlanSApo 100×/1.40) is convoluted with the DH-PSF using an all-optical 4f imaging system in the detection 
path of the microscope (see Figure 3).  The 4f imaging system is composed of two achromatic lenses (Edmund Optics 
NT32-886, f=15 cm) with a reflective liquid crystal phase-only spatial light modulator (SLM, Boulder Nonlinear 
Systems XY phase series) placed at a slight angle in the Fourier plane for optical convenience.  In Fourier plane of the 4f 
system, the Fourier transform of the sample image is multiplied by the phase mask of the SLM.  This product is then 
Fourier transformed by the second lens, thereby restoring a real-space image onto an electron-multiplying charge-
coupled device camera (EMCCD, Andor Ixon+).  The phase mask of the SLM is designed to be the Fourier transform of 
the DH-PSF.  Thus, the net effect of the 4f imaging system is to convolve the microscope image with the DH-PSF.  
Since the SLM can only modulate vertically polarized light, a polarizer is placed in the 4f system to reject unmodulated 
light.  This creates a significant loss in photon efficiency (~50%).  However, it is important to note that this loss is due to 
this specific implementation of the DH-PSF and can be easily avoided.30 

2.2 Data analysis 

The phase mask used to create the DH-PSF is a superposition of Laguerre-Gaussian modes derived from an optimization 
scheme,27 and since the DH-PSF is created by Fourier transforming the phase mask, an analytic expression of the DH-
PSF does not exist.  However, any transverse slice of the DH-PSF can be approximated by an eleven-parameter double 
Gaussian function, which can be written as 
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where (u, v) are coordinates on the EMCCD camera; A1 is the amplitude of the first lobe; A2 is the amplitude of the 
second lobe; (μx1, μy1) is the location of the first lobe; (μx2, μy2) is the location of the second lobe; σx1, σy1, σx2, and σy2 are 
widths of the lobes; and B is the amplitude of the background.  The MATLAB function fminsearch is used to compute 
these parameters by minimizing the mean-square error between Equation 2 and the measured data (a 19 × 19 pixel box is 
used around the emitter of interest).  Although an eleven-parameter function is difficult to fit without sufficiently 
accurate initial parameters, the use of eleven parameters is robust against various aberrations in the physical setup that 
cause asymmetric lobe amplitudes and shapes.  Once the DH-PSF has been fit to a double Gaussian function, the x and y 
locations of the emitter are determined by calculating the midpoint of the two lobes.  The z location of the emitter is 
calculated by measuring the angle between the two lobes and comparing this angle to a measured z calibration curve. 

 
Figure 4. Typical calibration curves for the DH-PSF setup.  (A) Angle versus z calibration curve with insets showing the 
rotation of the DH-PSF as a function of z. All of the inset images are plotted with the same color scale to show relative 
intensity. The tiny error bars show the standard deviation in the measured angle at each z position, which translates into a z 
localization precision of ~10 nm throughout a depth of field of 2 μm. (B) Deviation in the midpoint (xy) of the DH-PSF as a 
function of z. This deviation is constant over the entire lateral field of view for well-aligned systems. Data from both plots 
were collected from a 200 nm fluorescent bead producing an average of 10000 detected photons/frame at λ=645 nm. This 
bead was scanned at intervals of 50 nm in the axial direction with 50 acquisitions per each step. 
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The z calibration curve (see Figure 4A) is generated by measuring the rotation angle of the DH-PSF as a function of z 
with a piezoelectric objective z-scanner (Physik Instrumente PIFOC).  For the calibration curve shown in Figure 4A, a 
200 nm fluorescent bead emitting at λ=645 nm was moved in 50 nm steps in the axial direction, and fifty acquisitions 
were used at each step to determine the angle of the lobes at that position.  This curve is then used to translate the angle 
between the lobes of the DH-PSF into z position. 

Unfortunately, the midpoint of the DH-PSF is also a weak function of z (see Figure 4B).  As the z position of the emitter 
is scanned through the depth of field, the measured midpoint between the two lobes translates because of slight 
misalignments of the lenses and SLM in the 4f imaging system.  This midpoint can be measured as a function of z using 
the same scanning method used in Figure 4A; thus, data for both curves in Figure 4 are measured simultaneously from 
the same bead.  If the system is well aligned, the deviation of the center of the DH-PSF as a function of z is constant 
regardless of the emitter’s location in the xy plane.  Thus, any systematic deviation in the midpoint of the DH-PSF can be 
removed from experimental data using the calibration curve in Figure 4B.  It is important to note that stage drift is 
negligible in Figure 4B because the microscope stage was allowed to settle for several hours in a temperature-controlled 
laboratory before the data was taken.   

However, in many biological experiments, stage equilibration may not be possible due to the time constraints imposed 
by live cell imaging.  Thus, the microscope stage will drift during an experiment because of thermal and mechanical 
fluctuations, thereby introducing localization artifacts.  A typical method to correct drift during an experiment is to use a 
bright fiduciary, such as a fluorescent bead, in the sample as a reference for stage drift.  A typical track of a bright 
fiduciary as a function of time in a live-cell imaging experiment with no prior setup equilibration is shown in Figure 5.  
The movement of this fiduciary is subtracted from the measured locations of emitters within a sample, yielding data that 
is free of stage drift artifacts.  Since the fiduciary is usually much brighter than the emitters of interest, the localization 
error introduced by using the fiduciary is negligible compared to the error contributed by other noise sources. 

 
Figure 5.  Typical three-dimensional track of a bright fiduciary during a live-cell localization experiment.  The position of 
the fiduciary was recorded every 35 ms for ~75 seconds. The fiduciary is a 100 nm fluorescent bead emitting approximately 
20000 photons per acquisition. The inset shows the first 5 seconds of the track.  

Using a double Gaussian function to approximate the DH-PSF is computationally efficient while yielding satisfactory 
localization precision for high signal-to-noise ratios.  However, there is a small but significant deviation between the 
shape of the DH-PSF and the corresponding fit to a double Gaussian function.  In particular, the tails of the DH-PSF 
form an extra haze around the two lobes that scales with the brightness of the emitter (see Figure 6).  This haze is more 
severe along the axis connecting the two lobes than the orthogonal axis.  To the double Gaussian fitting algorithm, the 
haze effectively functions as a source of background noise, since the haze is not used by the algorithm to localize 
emitters.  If additional precision is desired, a more accurate model of the DH-PSF, such as an experimentally measured 
PSF,31 could be used for the fitting algorithm at the expense of computational speed. 
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Figure 6. Comparing the DH-PSF and double Gaussian fit.  (A) Experimentally measured DH-PSF using a 200 nm 
fluorescent bead as an emitter. Fifty frames of this bead producing approximately 8100 detected photons/frame were 
averaged together to create this image. Note that the two lobes are asymmetric in both intensity and shape. (B) Double 
Gaussian fit of the image in (A). (C) Profile of the experimentally measured DH-PSF (green) superimposed with the double 
Gaussian fit (red), viewed along the y-axis. This plot clearly shows the haze surrounding the two lobes of the DH-PSF. (D) 
Same as (C), except viewed along the x-axis. There is virtually no haze surrounding the DH-PSF along this axis. Pixel size 
in all plots is 160 × 160 nm in object space, which corresponds to 15 × 15 μm on the EMCCD camera. 

2.3 Theoretical model of imaging system 

A computational model of the microscope and 4f imaging system is necessary for simulating the DH-PSF as well as 
calculating the Fisher information present in the DH-PSF.  Specifically, the image of the DH-PSF as measured by the 
EMCCD camera must be calculated as a function of the location of a point source in the sample volume of the objective 
lens (see Figure 3).  The microscope maps the location of the point source in the object plane (x, y, z) to a location in the 
image plane (xi, yi, zi), which is given by 
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where z = 0 defines the focal plane of the objective lens, f + zi gives the distance between the point source image and the 
first lens in the 4f system, M is the magnification of the objective lens, and noil is the index of refraction of the immersion 
oil.  The index of refraction of the immersion oil must be taken into account since the sample is immersed in oil, while 
the image of the sample is formed in air. 

Once the location of the point source is determined in the image plane, it is relatively straightforward to calculate the 
image of the DH-PSF on the EMCCD camera.  Assuming that the numerical aperture of the system is sufficiently large, 
the Fourier transform of the point source in the image plane is a uniform intensity distribution at the SLM.  This 
distribution is modulated by the phase mask of the spatial light modulator, which is then Fourier transformed by lens L2 
onto the EMCCD camera.  Thus, the intensity image of the DH-PSF U(u, v) is given by32 
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where λ is the wavelength of the point emitter, f is the focal length of the lenses in the 4f system, (xi, yi, zi) is the location 
of the point source image in the image plane, (u, v) are coordinates on the EMCCD camera, F is the two-dimensional 
Fourier transform operator, and tA(x, y) is the transmittance function of the phase mask.  It is important to note that this 
model assumes a monochromatic point emitter.  This assumption is largely for computational speed and convenience, 
and we find that this model predicts the behavior of the DH-PSF with reasonable accuracy. 

2.4 Fisher information calculation 

One of the fundamental issues in single-molecule microscopy is the precision with which the position of a single 
molecule can be estimated.  Localization precision is of significant interest in single-molecule data analysis and when 
comparing different microscopy techniques regardless of estimation algorithms.  Due to the stochastic nature of the 
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acquired data in single-molecule microscopy, the estimation of the location of the single-molecule emitter is recast as a 
statistical problem.  Here, we use the tools of statistical estimation theory and specifically Fisher information analysis to 
find the fundamental limit of the 3D localization precision of a single molecule.  

Fisher information is a quantity that plays a central role in the statistical estimation theory.33, 34  It describes how much 
information a likelihood function contains about a parameter.  In our case, the likelihood function is the DH-PSF 
(regarded as the probability distribution for detection of photons) and the parameters we are concerned with are the 
lateral and axial positions of the emitter.  The inverse of the Fisher information matrix is called the Cramer-Rao bound 
(CRB), which is the lowest possible position estimation variance that can be achieved when estimating the position of a 
point emitter with an unbiased estimator (i.e., any estimation procedure whose mean produces the correct result), i.e., 

)(12 I .  The square root of the CRB is the lower limit of localization precision.  It is a fundamental parameter for 
evaluating the precision of different estimators, and it is a useful bound for comparing different microscopy techniques.  

              
Figure 7. The numerically obtained (A) DH-PSF and (B) standard PSF images versus axial distance for λ = 633 nm which 
are used as the image function ),(

0
yxqz  in the Fisher information calculation. 

In order to calculate the smallest value of the localization precision, we have adopted the same methodology described 
previously,3, 13 with the only difference that the image function, i.e. ),(

0
yxqz , is replaced by the DH-PSF shown in 

Figure 7A.  Figure 7B shows the standard PSF, which is the simple Airy profile characteristic of conventional 
fluorescence microscopy.  The Fisher information matrix is calculated as  
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where ),(
0

yxqz  describes the image of a single molecule at unit magnification that is located at (0, 0, z0) in the object 
space.  However, several nonideal effects need to be modeled in order to produce Fisher information calculations that 
reflect experimental observations.  We include two major effects in our calculation.  The first is pixelation, which is due 
to the finite sized pixels of the EMCCD camera.  The second and more significant effect is background noise, which 
arises from any fluorescent object that is not the emitter of interest.  These experimental effects lead to a modification of 
the description of the stochastic data generation process, and they have been previously implemented in the Fisher 
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information theoretical analysis of conventional microscopy techniques.3, 13  Here, we extend the same analysis to the 
DH-PSF technique.  For a pixelated detector with additive Poisson noise with mean β counts per pixel, the Fisher 
information matrix is calculated as follows: 
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.  Here Θ denotes the parameter space, Np denotes the number of 

pixels, N denotes the number of photons, Ck is the region in the xy plane occupied by the kth pixel, M denotes the lateral 
magnification of the microscope, (x0, y0, z0) denotes the 3D location of the single molecule in the object space.  

 

3. RESULTS AND DISCUSSION 
3.1 Comparison between the standard PSF and the DH-PSF for three-dimensional localization 

Here, we use the mathematical analysis given in Section 2.4 to calculate the localization precision of the DH-PSF and 
compare it with the standard PSF.  In our calculation, we have used M = 100, Np = 625 pixels (i.e., array of 25 × 25 
pixels) with square pixels of width 160 nm, and additive Poisson noise with a mean value of β = 2 photons/pixel for 
1000 photons present in the DH-PSF.  Other noise sources are assumed to be negligible and are not included in our 
calculation.  In addition, the refractive index of the object space medium is set to noil = 1.518 to account for the effect of 
immersion oil in our setup.  It is noteworthy that unlike the standard PSF there is no closed-form formula for the DH-
PSF.  Therefore, all our results are numerically calculated from the 3D sampled function in Figure 7A, which was 
computed from the DH-PSF phase mask using the model described in Section 2.3. 
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Figure 8. Comparison of the Cramer-Rao bound for the parameters (A) x, (B) y, and (C) z between the DH-PSF and standard 
PSF.  Here, we denote CRBx by σx, CRBy by σy, and CRBz by σz. These quantities represent the best possible localization 
precision attainable for these point spread functions with a given amount of detected photons and noise. In this calculation, 
we have used N = 1000 photons and a background Poisson noise with mean value of β = 2 photons/pixel. In addition, the 
refractive index of the object space medium is set to noil = 1.518 to account for the effect of immersion oil in our setup. 

Figure 8 compares the localization precision of the DH-PSF with the standard PSF as a function of the axial position z 
with respect to focus.  It is clear that the DH-PSF results in higher and uniform localization precision in all three 
dimensions than the standard PSF throughout a 2 μm depth of field.  However, just near the focal plane, the lateral 
localization precision of the standard PSF is slightly better than the DH-PSF.  This is because the spot size of the 
standard PSF is smaller than the spot size of the DH-PSF near the focal plane.  More importantly, the singularity of the 
axial localization precision of the standard PSF is not present for the DH-PSF.  This singularity is a result of the 
symmetry of the standard PSF above and below the focal plane and the weak change in the PSF with z described above. 
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3.2 Comparison between an astigmatic PSF and the DH-PSF for three-dimensional localization 

The first method proposed for three-dimensional super-resolution imaging used a cylindrical lens to introduce an 
astigmatic aberration in the detection path of the microscope.14, 15  The z position can then be inferred from the widths of 
an asymmetric Gaussian fit to the astigmatic PSF.  We have performed experiments to compare, based on the number of 
photons collected, the z localization precision of both astigmatic imaging and the DH-PSF.  In the astigmatic experiment, 
a 1000 mm focal length cylindrical lens was placed in between the imaging lens and the EMCCD, and the 4f imaging 
system was removed.  The image of 200 nm fluorescent beads emitting at 645 nm was fit to a Gaussian function with 
independent standard deviations in x and y by minimizing the mean-square error between the data and the model 
function using the MATLAB function, fminsearch.  The DH-PSF was also fit using fminsearch. A calibration curve of 
the x standard deviation and the y standard deviation of the Gaussian fit as a function of z position was obtained.  The 
ratio of the x standard deviation to the y standard deviation was used to obtain a z position through interpolation from the 
calibration curve.  As can be seen from the data in Figure 9, the astigmatic PSF does not perform as well as the DH-PSF 
in the z direction near the focal plane for a given number of detected photons, which in this case is 900-1000 photons per 
localization.  Of course, more sophisticated fitting algorithms could be employed to improve the localization precision,31 
but these would also be expected to improve the precision of the DH-PSF. 

 
Figure 9. Comparison of localizations made with A) an astigmatic PSF versus B) the DH-PSF for a given number of 
detected photons.  A) The astigmatic PSF was generated with a 1000 mm focal length cylindrical lens. On average, 990 
photons were collected per acquisition. The inset shows a typical image from which the position of the bead was obtained. 
The z localization precision is 67 nm. B) The DH-PSF has a localization precision of 26 nm in the z direction for 910 
photons detected. This demonstrates that, near the focal plane, the DH-PSF is more useful than the astigmatic PSF for z 
localization. For both experiments, a 200 nm fluorescent bead was used as an emitter. 

3.3 Quantum dot tracking inside living cells 

Because of the high localization precision in z that is affordable with low photon budgets, the DH-PSF is ideally suited 
to three-dimensional single particle-tracking applications.  We have used the DH-PSF to image quantum dots (QTracker 
655, Invitrogen) with high spatial and temporal resolution both in 80% glycerol/H2O solution and in live COLO205 
cells.  Figure 10 shows results from the single quantum dot tracking experiments.  The stock solution of the quantum 
dots was diluted to a concentration of 0.1 nM in 80% glycerol/water and sonicated for 1 hour to reduce the number of 
aggregates.  In order to make sure that we are analyzing the tracks from single quantum dots and not aggregates, only 
traces that showed on/off fluorescence intermittency (blinking) were analyzed.  The quantum dots were pumped with an 
irradiance of 100 kW/cm2 with a 561 nm diode laser (Crystalaser, 25 mW).  The emission light was filtered by both a 
dichroic mirror and a long pass filter (Semrock BLP01-561R).  The refractive index of the immersion oil on the 
objective is 1.518, while the refractive index of the glycerol solution is 1.44.  We have rescaled the z values by the factor 
nsolution/noil to account for this index difference.35  Figure 10 shows the results of the experiments. 
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The mean-squared displacement (MSD) of 5 quantum dots was found for short lag times in the 3D Euclidean 
displacement vector r.  For a lag time, tlag, the 3D MSD is defined by (with ‹› denoting time average) 

 
2

)()()( ttttMSD laglag rr . (7) 

For purely diffusive motion with an uncertainty in the measurement σ at each time point (due mostly to limited photon 
counts and motion during the acquisition time), the MSD scaling versus tlag is given by 

 
n

i
ilaglag nDttMSD 222)( , (8) 

where D is the diffusion coefficient, n is the number of dimensions, and σi is the position uncertainty in each dimension.  
Figure 10C shows a plot of the MSD in r versus lag time averaged over the trajectories of 5 different quantum dots.  A 
fit to the MSD for r is also shown in Figure 10C.  The diffusion coefficient D obtained from the slope was found to be 
0.2 μm2/s.  Using the Einstein-Smoluchowski relation for a spherical particle and parameter values for the viscosity of 
the 80% glycerol solution at 296 K of ~ 50 cP, we obtained a hydrodynamic radius of 21 nm for the individual quantum 
dots.  

 
Figure 10. Tracking of a single quantum dot emitter in an 80% glycerol solution.  (A) A representative 293-step trajectory 
taken with 7.5 ms integration time. (B) Images of quantum dots at times of 7.5 ms, 0.56 s, 1.12 s, 1.68 s, and 2.22 s for 
images 1, 2, 3, 4, and 5, respectively. Scale bar is 1 μm. (C) Plot of the mean-square displacement in r for the average of 5 
different single quantum dots. A fit to the MSD for displacement r gives a diffusion coefficient of 0.2 μm2/s.  

Imaging in live cells is often complicated by refractive index mismatches and autofluorescent background.  Since the 
ultimate goal of the DH-PSF imaging is three-dimensional imaging of live cells, we decided to test the viability of the 
method in tracking quantum dots in live cells.  We incubated COLO205 cells with 1 nM QTracker (Invitrogen) quantum 
dots and peptide carrier for 1 hour, followed by three washes with PBS pH 7.4 buffer.  The COLO205 cells are 
approximately 8-10 μm in diameter, which is a thicker sample than any sample previously studied with the DH-PSF.  
The imaging buffer is pH 7.4 PBS and the quantum dots are being excited with a 561 nm diode laser at an irradiance of 
~10 kW/cm2.  In Figure 11A, images at different time points displaying a well-formed DH-PSF are displayed.  Figure 
11B shows a typical image of what is most likely a vesicle containing several endocytosed quantum dots.  The motion of 
the intracellular structure typically followed a slow, nondiffusive path.  Thus, data were taken with time-lapse imaging 
with 0.1 s exposures every 1 s.  On average, 3200 photons were detected per frame with a background noise of 5 
photons/pixel/frame most likely resulting from autofluorescent pumping of cellular structures.  In Figure 11C, the entire 
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track, which lasted 98 s, is shown.  Symbols representing the acquisitions in Figure 11A are shown on the track in Figure 
11C.  For this demonstration, we assume that the cell had the same refractive index as water to extract the z position of 
the emitter; since no quantification of the track dynamics is performed, this is a reasonable assumption.  Based on this 
experiment, the DH-PSF is a viable method for live cell tracking experiments.  Since we are using adaptive optics to 
form the DH-PSF, it should also be possible in the future to correct for any aberrations, due to index mismatch within the 
sample, by using the SLM36 to produce a more perfect DH-PSF. 

 
Figure 11. Tracking a quantum dot-labeled structure in a live cell in 3D.  (A) Images taken of the structure at different 
points along the trajectory showing different z positions. The bright aggregate in the top-right corner should be ignored. 
(B) Fluorescence image of the emitter overlaid on a white light image of the COLO205 cell (scale bar is 2 m). (C) Three-
dimensional plot of the labeled structure’s trajectory, showing a variety of diffusive and linear transport characteristics. 
Points on the curve that correspond to the images in (A) are shown by red shapes. An average of 3200 photons/frame with a 
background noise of 5 photons/pixel/frame was measured for this trajectory. 

 

4. CONCLUSION 
In conclusion, we have shown in detail why the DH-PSF is far more suitable for three-dimensional superresolution 
fluorescence imaging than the standard point spread function of a conventional microscope.  The DH-PSF contains 
higher and more uniform Fisher information than the standard PSF over a 2 μm depth of field.  In addition, we have 
shown that the DH-PSF can achieve greater z localization precision than the astigmatic PSF near the focal plane for a 
given amount of detected photons.  To prove that the DH-PSF is useful for dim emitters in biological environments, we 
have imaged quantum dots in glycerol solution and in live cells.  On the basis of these experiments, we believe that the 
DH-PSF is a viable candidate for three-dimensional superresolution studies of biological phenomena. 
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